Environmental Consequences of Increased Use of Ethanol and Alkylates in California Fuels

April 10-11, 2001

Framework for Comparative Evaluation of Environmental Impacts of Fuel Options

J. Michael Davis, Ph.D.

National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Research Triangle Park, NC

"Compared to gasoline, the ethers MTBE and ETBE have relatively large aqueous solubilities and would likely leach more rapidly through soil and groundwater. Also, limited data suggest that ethers may be persistent in subsurface environments."

U.S. EPA (1992)

"Very little is known about emissions and releases from MTBE and ETBE storage and distribution, making this area an appropriate target for research."

U.S. EPA (1992)

"Research Objectives:

1. Assess the impact of reformulated gasolines on the potential for groundwater contamination and resultant pollutant exposure."

U.S. EPA (1992)

U.S. EPA (1992):

Alternative Fuels Research Strategy

US Environmental Protection Agency Office of Research and Development Report EPA/600/AP-92/002

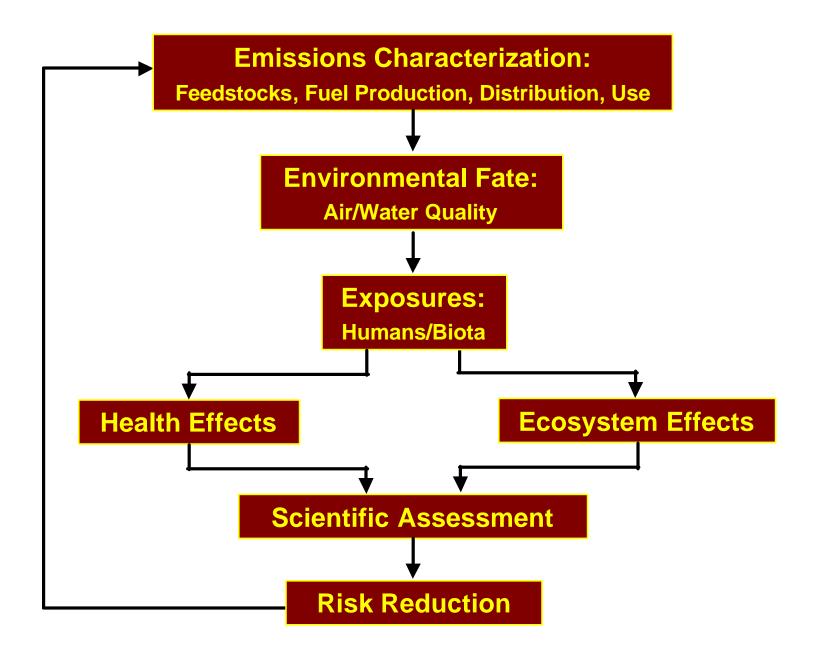
www.epa.gov/ncea/pdfs/mtbe/altfuel. pdf

Risk Assessment

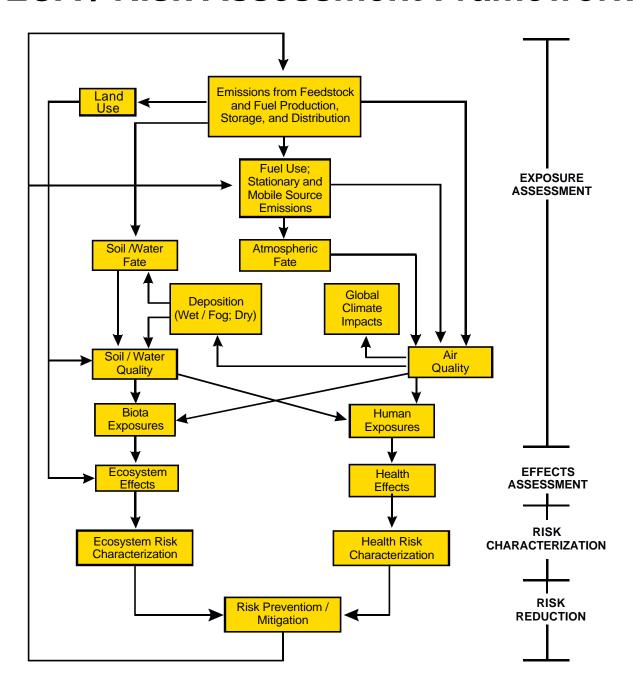
Hazard Identification

(Qualitative)

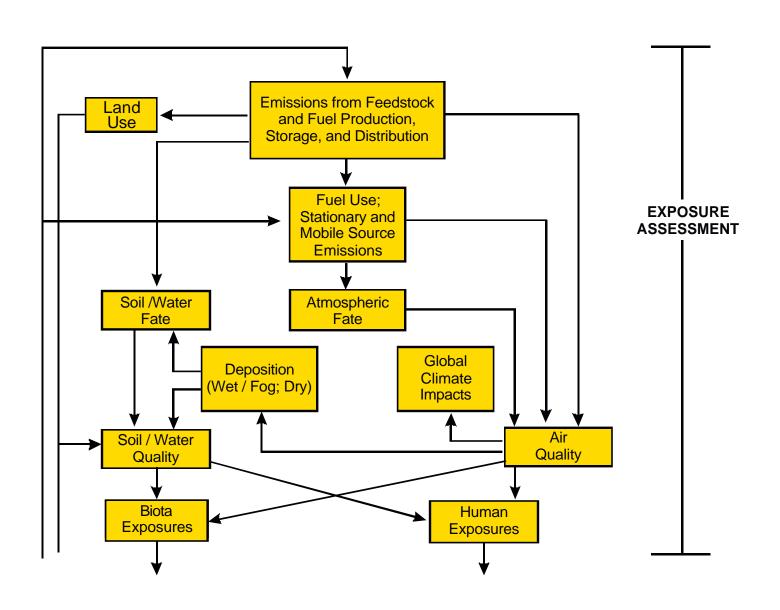
Dose-Response


(Quantitative)

Exposure


(Population contact)

Risk Characterization


(Incidence of adverse effect)

LCA / Risk Assessment Framework

LCA / R.A. Framework: Exposure Component

Some Possible Fuel Options for Comparative Assessment

- RFG/MTBE
- RFG/Ethanol
- RFG/nonOxygenate
- NOTE: These fuel options and the specific issues identified on the following pages are for illustrative purposes. They do not represent a judgment that these are necessarily the only options or the most important issues for consideration.

Source/Emissions Characterization

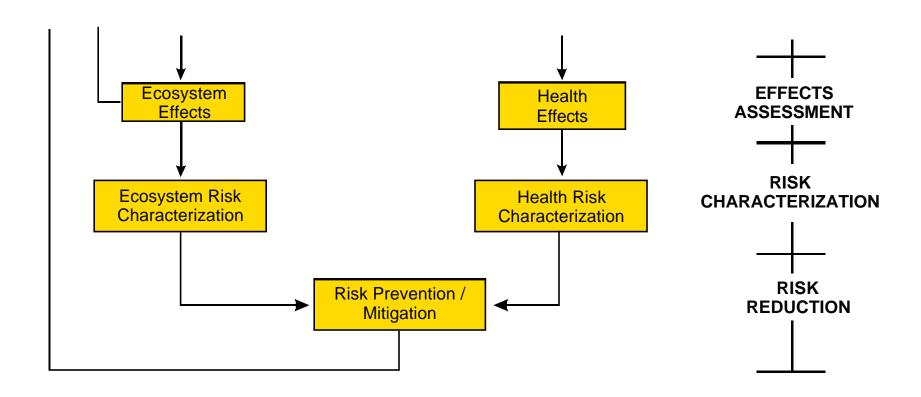
	MTBE	EtOH	No Oxy
Feedstock	Methane	Pesticides	Ref. Pt.?
Production	VOCs, (GHGs	"
Distribution	Small/chronic	Large/acute	"
Storage	Materials co	mpatibility	,,

Source/Emissions Characterization (cont.)

	MTBE	EtOH	No Oxy
Use (evap. &	Air toxics,	CH ₃ CHO,	Alkylates,
combust.)	NOx, CO,	alkylates,	toluene,
	etc.	etc.	??

Environmental Fate

	MTBE	EtOH	No Oxy
Air	HCHO, TBF	PAN	?
Subsurface	TBA	BTEX incrs.?	Alkylates
Surface Water	?	?	?


Environmental Quality

	RFG with:		
	MTBE	EtOH	No Oxy
Air	Air toxics, CO, O ₃ , GHGs		
Subsurface	MTBE	EtOH, BTEX,	Alkylates
		alkylates	
Surface Water	"	"	,,

Exposure Assessment

	RFG with:		
	MTBE	EtOH	No Oxy
Human	Acute/Chronic		
	Personal & Population Exposures		
	C	umulative & Mixtu	ares
		Acute/Chronic	
Biota	 A	Aquatic/Terrestrial	

LCA / R.A. Framework: Cont'd.

Risk Assessment

Hazard Identification

(Qualitative)

Dose-Response

(Quantitative)

Exposure

(Population contact)

Risk Characterization

(Incidence of adverse effect)

Health Effects

RFG with:

MTBE

EtOH

No Oxy

Acute

Neurobehavioral, Respiratory, Organoleptic, etc.?

Chronic

Cancer Potency
Inhalation RfC
Oral RfD

Ecosystem Effects

Terrestrial

Freshwater

Marine

Aquatic

	KrG wim:	
MTBE	EtOH	No Oxy
	- Organism	
	Population	
Co	ommunity/Eco	system

DEC with.

Global Climate Change

RFG with:

MTBE

EtOH

No Oxy

 CO_2

Methane

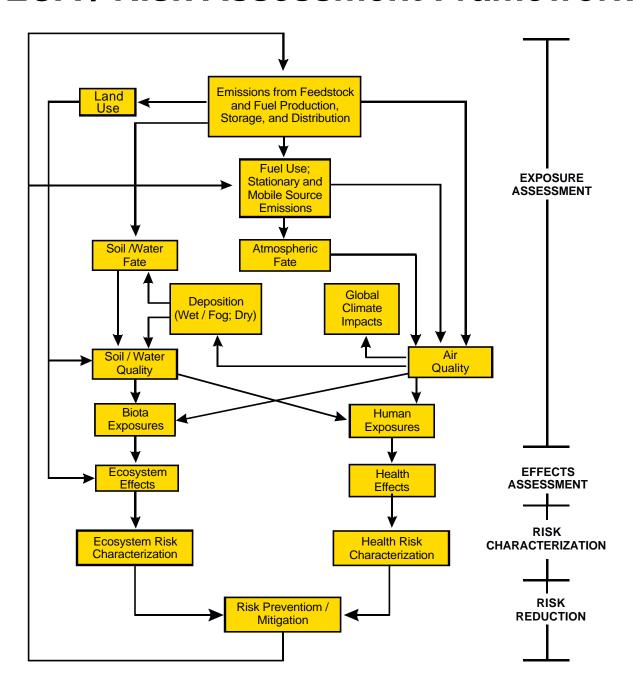
 N_20

CO

NOx

VOCs

Increases?


Decreases?

No Net Change?

Risk Characterization

	MTBE	EtOH	No Oxy
Human	Increased /	Increased /	Increased /
Health	decreased	decreased	decreased
	risks?	risks?	risks?
Ecosystem Impacts	•••	•••	, ,

LCA / Risk Assessment Framework

Risk Management

- Risk assessment feeds into risk management
- Risk management feeds back, e.g., emission controls may reduce exposure and hence risk
- LCA "sensitivity" analysis may identify critical points in life cycle where risk management efforts can be focused